K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2020

để chứng minh 1 trong 3 số a,b,c là lập phương của 1 số hữu tỉ ta sẽ chứng minh \(\sqrt[3]{a};\sqrt[3]{b};\sqrt[3]{c}\) có ít nhất 1 số hữu tỉ

đặt \(\hept{\begin{cases}x=\frac{a}{b^3}\\y=\frac{b}{c^3}\\z=\frac{c}{a^3}\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{x}=\frac{b^3}{a}\\\frac{1}{y}=\frac{c^3}{b}\\\frac{1}{z}=\frac{a^3}{b}\end{cases}}}\)

do abc=1 => xyz=1 (1)

từ đề bài => \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow x+y+z=xy+yz+xz\left(xyz\ge1\right)\left(2\right)\)

Từ (1)(2) => \(xyz+\left(x+y+z\right)-\left(xy+yz+zx\right)-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

vậy \( {\displaystyle \displaystyle \sum }x=1 \) chẳng hạn, => \(a=b^3\)

\(\Rightarrow\sqrt[3]{a}=b\)mà b là số hữu tỉ

Vậy trong 3 số \(\sqrt[3]{a};\sqrt[3]{b};\sqrt[3]{c}\)có ít nhất 1 số hữu tỉ (đpcm)

28 tháng 11 2019

Đặt \(\left(\frac{a}{b^2},\frac{b}{c^2},\frac{c}{a^2}\right)=\left(x,y,z\right)\)

\(\Rightarrow xyz=\frac{abc}{a^2b^2c^2}=\frac{1}{abc}=1\)

Theo bài ra ta có : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)

\(\Leftrightarrow x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow x+y+z=xy+yz+xz\)

\(\Leftrightarrow\left(xy-x-y+1\right)-1+z\left(x+y-1\right)=0\)

\(\Leftrightarrow\left(xy-x-y+1\right)+z\left(x+y-1-xy\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)-z\left(x-1\right)\left(y-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(1-z\right)=0\)

\(\Leftrightarrow\frac{a-b^2}{b^2}.\frac{b-c^2}{c^2}.\frac{a^2-c}{a^2}=0\)

\(\Leftrightarrow\left(a-b^2\right)\left(b-c^2\right)\left(c-a^2\right)=0\)

Ta có đpcm

6 tháng 3 2018

Ta có: ab2+bc2+ca2=a2c+b2a+c2bab2+bc2+ca2=a2c+b2a+c2b

⇔a3c2+b3a2+c3b2=b3c+c3a+a3b

⇔a3c2+b3a2+c3b2=b3c+c3a+a3b ( Do a2b2c2=abc=1)

⇔ a3c2+b3a2+c3b2 -b3c-c3a-a3b+a2b2c2-abc=0( Do a2b2c2=abc=1)

⇔(a2b2c2−a3c2)−(b3a2−a3b)−(c3b2−c3a)+(b3c−abc)=0

⇔(a2b2c2−a3c2)−(b3a2−a3b)−(c3b2−c3a)+(b3c−abc)=0

Tự phân tích thành nhân tử nhá: ⇔(b2−a)(c2−b)(a2−c)=0⇔(b2−a)(c2−b)(a2−c)=0

Đến đây suy ra ĐPCM

27 tháng 8 2019

1/ Đặt

\(\frac{a}{b^2}=x,\frac{b}{c^2}=y,\frac{c}{a^2}=z,xyz=1\)thì ta có

\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow xy+yz+zx=x+y+z\)

\(\Leftrightarrow xyz-xy-yz-zx+x+y+z-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

\(\Leftrightarrow x=1;y=1;z=1\)

\(\Rightarrow\frac{a}{b^2}=1;\frac{b}{c^2}=1;\frac{c}{a^2}=1\)

\(\Leftrightarrow a=b^2;b=c^2;c=a^2\)

27 tháng 8 2019

2/ Đặt

\(ab=x,bc=y,ca=z\) cần tính

\(P=\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\left(1+\frac{y}{x}\right)\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{cases}}\)

Xét \(x+y+z=0\)

\(\Rightarrow P=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}=\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-1\)

Xét \(x^2+y^2+z^2-xy-yz-zx=0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

5 tháng 11 2019

\(\frac{1}{a+bc}+\frac{1}{b+ac}=\frac{1}{a+b}\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(c+1\right)}{\left(a+bc\right)\left(b+ac\right)}=\frac{1}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\left(c+1\right)=ab\left(c^2+1\right)+c\left(a^2+b^2\right)\)

\(\Leftrightarrow2abc+a^2+b^2+ab=abc^2\)

\(\Leftrightarrow\left(a^2+b^2+2ba\right)=ab\left(c^2-2c+1\right)\)

\(\Leftrightarrow\left(a+b\right)^2=ab\left(c-1\right)^2\)

\(\Rightarrow ab>0\) , ab là bình phương của số hữu tỉ

\(\Rightarrow c-1=\frac{a+b}{\sqrt{ab}}\)

\(\Rightarrow c+1=\frac{a+b}{\sqrt{ab}}+2=\left(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)^2\)

Khi đó : \(\frac{c-3}{c+1}=1-\frac{4}{c+1}=1-\frac{4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)

Mà \(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}=\frac{a+b-2\sqrt{ab}}{a-b}\) là số hữu tỉ do ab là bình phương của số hữu tỉ 

\(\Rightarrow\frac{c-3}{c+1}\) là bình phương của số hữu tỉ ( đpcm )

11 tháng 4 2021

Bạn ơi sao mà ab la bình phương số hữu tị vậy ạ ?